

# **UWR Rainwater Offset Unit Standard**

# (UWR RoU Standard)

Concept & Design: Universal Water Registry

## www.uwaterregistry.io Project Concept Note & Monitoring Report (PCNMR)



Project Name: Wastewater Recycling & Reuse Project by Veerapandi

<u>CETP, Tirupur</u> UWR RoU Scope:5 Monitoring Period: 01/01/15- 31/12/2024 Crediting Period: 2015- 2024 UNDP Human Development Indicator:0.644<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> <u>https://www.undp.org/</u>

## A.1 Location of Project Activity

| Address of the Project<br>Activity | S.F.NO.548/1A, Veerapandi Village, Tirupur South<br>Taluk, Tirupur, Tirupur District., 641604. |
|------------------------------------|------------------------------------------------------------------------------------------------|
| State                              | Tamil Nadu                                                                                     |
| District                           | Tirupur                                                                                        |
| Block Basin/Sub<br>Basin/Watershed | Noyyal river basin<br>http://cgwb.gov.in/watershed/basinsindia.html                            |
| Lat. & Longitude                   | 11.072916, 77.346015                                                                           |
| Area Extent                        | Textile Industry                                                                               |
| No. of Villages/Towns              | Veerapandi Village                                                                             |



#### Purpose of the project activity:

The Veerapandi Effluent Treatment Plant, with an installed capacity of 12 MLD and an operational capacity of 10.75MLD, was commissioned from March 5th, 2008 onwards and the CETP located at S.F.NO.548/1A,, Veerapandi Village, Tirupur South Taluk, Tirupur, Tirupur District., 641604, treats the raw effluent by Lime and Ferrous Sulphate (one stage chemical treatment resulting in sludge) before discharging the treated effluent into the Noyyal river basin. Subsequently the CETP planned ZLD scheme & got approval of the scheme with details given in September 2006 and amendment on 19" June 2007. The members changing the use of sodium sulphate instead of common salt with the plan to recover sodium sulphate salt for reuse.

| CONCEN    | T ORDER NO. 2408157840331                                                                                                                                                                            | DATED: 27/03/2024.                                                                                            |                                                                                                      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                                                      |                                                                                                               |                                                                                                      |
| PROCEE    | DINGS NO.T5/TNPCB/F.0482TH                                                                                                                                                                           | PN/RL/TPN/W/2024 DATED                                                                                        | : 27/03/2024                                                                                         |
|           |                                                                                                                                                                                                      |                                                                                                               |                                                                                                      |
| SUB:      | Tamil Nadu Pollution Control<br>COMMON EFFLUENT TREA<br>548/1,548/8A,548/7A,548/3A1.3<br>Tiruppur south Taluk and Tiruppu<br>discharge of sewage and/or trade c<br>Pollution) Act, 1974 as amended i | A2,548/5B,8A1,8A2,8B,1,2,549<br>Ir District - Renewal of Consent for<br>Structure and the section 25 of the V | 550/5, VEERAPANDI village,<br>for the operation of the plant and<br>Water (Prevention and Control of |
| REF:      | 1) Board Proc. No.T5/TNPCB/F.0-                                                                                                                                                                      | 482TPN/RL/TPN/W & A/2023 d                                                                                    | ated: 24.03.2023                                                                                     |
|           | 2) DEE/TPR(N), IR.No : F.0482T                                                                                                                                                                       |                                                                                                               |                                                                                                      |
| Pollution | EWAL OF CONSENT is hereby<br>Act, 1974 as amended in 1988 (Co<br>orders made there under to                                                                                                          | granted under Section 25 of the v<br>entral Act, 6 of 1974) (hereinafter                                      | Water (Prevention and Control of referred to as "The Act") and the                                   |
|           | The Managing Director                                                                                                                                                                                |                                                                                                               |                                                                                                      |
|           | S.F No. R.S.No. 548/1,548/8A                                                                                                                                                                         | ON EFFLUENT TREATMENT I<br>548/7A,548/3A1,3A2,548/5B,8/                                                       | PLANT PRIVATE LIMITED<br>A1,8A2,8B,1,2,549,550/5                                                     |
|           | VEERAPANDI Village<br>Tiruppur south Taluk                                                                                                                                                           |                                                                                                               |                                                                                                      |
|           | Tiruppur South Tatuk<br>Tiruppur District.                                                                                                                                                           |                                                                                                               |                                                                                                      |
|           | horising the occupier to make disch                                                                                                                                                                  | Comment of tends off                                                                                          | iont                                                                                                 |
| 771.3     | s is subject to the provisions of the<br>s incorporated under the Special at                                                                                                                         | e Act, the rules and the orders ma                                                                            | ade there under and the terms and                                                                    |
| and subj  | ect to the special conditions annexe                                                                                                                                                                 | ed.                                                                                                           |                                                                                                      |
| Thi       | s RENEWAL OF CONSENT is va                                                                                                                                                                           | lid for the period ending March 3                                                                             | 31, 2026                                                                                             |
| 10.00     |                                                                                                                                                                                                      | S RAGUPAT                                                                                                     | Digitally signed by S RAGUPATH<br>Date: 2024.03.27 19:37:06 +05'3                                    |
|           |                                                                                                                                                                                                      | Fo                                                                                                            | r Member Secretary,<br>du Pollution Control Board,<br>Chennai                                        |
|           |                                                                                                                                                                                                      |                                                                                                               | Chemin                                                                                               |

#### NOC For Safe Discharge of Effluent dated- 27/03/2024



#### **RAW EFFLUENT RECEIVING SUMP**



#### **AERATION TANK & SECONDARY CLARIFIER**



**MF FILTRATION UNITS** 



**R.O –III STAGES** 



MECHANICAL EVAPORATOR



R.O – V TH STAGE



MULTIPLE EFFECT EVAPORATOR



CHLORINATION SYSTEM

#### VCETP Units

B-1 Biological treatment (Extended aeration process) with mechanical sludge dewatering.

B-2 Oxidation (0 R) in HDPE reactor with Chlorine gas as the oxidant.

B-3 Its subsequent reduction by Sodium Meta Bi Sulphate (SMBS) before leaving the reactor

B-4 Coagulation & settlement of the residues of the oxidation-reduction reaction & Hardness removal.

B-5 Interface treatment by dual media filter, ultrafiltration membrane & activated carbon filter.

B-6 Sequential 3 stage R.O membranes to recover 90% of the raw effluent as permeate.

B-7 Hardness removal from R.O rejects

B-8 Accelerated evaporation of R.0 reject by Multistage falling and two stage forced film Mechanical Evaporator followed by crystallizer, centrifuge and a salt drier for mixed salt and recovering sodium sulphate salt for reuse.

B-9 Disposing the sludge in upcoming landfill being put up by the Federation of CETPs, Tirupur

#### The Technical Appraisal of Pre-Treatment.

The pre-treatment has been conceived to ensure 100 % reliability in the "plant availability" factor. Biological treatment system followed by Oxidation Reduction (0.R) process, involving oxidation with Chlorine gas and its reduction with SMBS for color and COD removal and settling out the residues of the reaction by d/s coagulation & precipitation in a flash mixer, flocculator & clarifier using lime soda process to also perform hardness reduction.

The design is based on data obtained by the actual operation of the plant by CETP and the project consultant. This process removes color and reduces hardness as per operating parameters submitted to us and makes the treated water fit to feed R.O. Chlorine treatment is essential for color removal, therefore in case of shortage of chlorine the plant will either use alternate coagulant and remove color or stop the discharge of effluent temporarily, as for recovery of sodium sulphate salts from reject, color removal before feeding R.O is a critical operation.

#### The Technical appraisal of R.O

The pre-treated effluent undergoes a polishing treatment before entering the reverse osmosis (RO) membranes. This polishing process involves a series of filtration steps, beginning with dual media filters composed of anthracite, followed by ultrafiltration (UF) membranes, activated carbon filters, and finally, cartridge filters. Both the UF and RO membrane systems are configured according to the manufacturers specifications.

#### The Technical Appraisal of Evaporation of R.O Rejects

The RO reject stream will undergo treatment to remove hardness using a conventional lime soda process. The resulting water will then be partially evaporated in a Mechanical Vapor Recompression (MVR) unit. The concentrated output from the MVR will be further processed in a new multi-stage falling film evaporator and a two-stage forced film mechanical evaporator, which will include a crystallizer and centrifuge. This system will also incorporate an additional boiler and cooling tower. The recovered salt will be dried and bagged for reuse by member industries. The remaining reject stream will be dried in an agitated thin film dryer and disposed of as mixed salt in a landfill, after receiving approval from the Tamil Nadu Pollution Control Board (TNPCB).

#### The Technical Appraisal of Solid Wastes Disposal

Tamil Nadu Pollution Control Board (TNPCB) has given permission (consent number 3128, dated 12-12-2005) for a special landfill in Tirupur. This landfill is only for safe disposal of solid waste from Common Effluent Treatment Plants (CETPs) in the area.

| Project Proponent (PP): | Veerapandi Effluent Treatment Plant Private<br>Limited   |
|-------------------------|----------------------------------------------------------|
| UCR Project Aggregator  | Viviid Emissions Reductions Universal Private<br>Limited |
| Contact Information:    | lokesh.jain@viviidgreen.com                              |

## A.2. Project owner information, key roles and responsibilities

The Project Proponent (PP) affirms that they meet all the requirements outlined in the management plan regarding ownership, legal rights, permits, and cost details for the successful implementation of the project. Specifically.

Water User Rights: The PP holds the necessary water user rights for the area within the project's boundary. These rights are legally secured and ensure that the PP has full entitlement to use the water resources required for the project's operations accredited By TNPCB.

Legal Land Title: The PP holds an uncontested legal land title for the entire project area within the project's boundary. The title is fully documented and free of any disputes, confirming the PP's legal right to utilize the land for project purposes.

Necessary Permits: The PP has obtained all the required permits for the implementation of the project. In cases where certain permits are pending, the PP has already applied for the necessary approval and is working in full compliance with the relevant regulatory requirements to ensure the timely commencement of the project.

Cost Details: The PP has thoroughly assessed and documented the cost details for project implementation. A detailed cost breakdown is available in the DPR, Capital Cost of project was RS. 31.29 Crores. covering all aspects of project development, including infrastructure, permits, equipment, and operational costs.

By meeting these criteria, the PP ensures that all legal and regulatory requirements for the project are satisfied, enabling the project to proceed without hindrance.

| PROJECT NAME        | Wastewater Recycling & Reuse Project by Veerapandi CETP, Tirupur                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UWR Scope:          | Scope 5: Conservation measures taken to<br>recycle and/or reuse water, spent washing<br>wastewater etc. across or within specific<br>industrial processes and systems, including<br>wastewater recycled/ reused in a different<br>process, but within the same site or location<br>of the project activity. Recycled wastewater<br>used in off-site landscaping, gardening or tree<br>plantations/forests activity are also eligible<br>under this Scope. |
| Date PCNMR Prepared | 24-02-2025                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## A.2.1 Project RoU Scope

## A.3. Land use and Drainage Pattern

Not Applicable.

This Project activity involves treating and reusing wastewater. It doesn't include any land-use practices. Also, this is an industrial process designed with technical requirements and following the specified

norms of the local pollution control board. Hence, the project activity does not harm any land and Drainage system.

## A.4. Climate

The project activity does not rely on the climatic conditions of the area as it treats and reuses only the wastewater from the dying & textile without letting the water be exposed to any climatic condition.

## A.5. Rainfall

The project activity is not dependent on the rainfall pattern of the area as it treats and reuses the wastewater from the dying Industry.

### A.6. Ground Water

NA

## A.7. Alternate methods

All Textile Plant in Tamil Nadu, They have a mandate to maintain the TDS below 1500 mg/L from the state government; however, they have installed Mechanical Vapor Recompression (MVR) and Mechanical Evaporation (MEE), which serve as alternative solutions for the Effluent Treatment Plant (ETP). RO is used to remove dissolved solids, and MEE helps in evaporating water to concentrate the dissolved salts. These systems are designed to reduce the TDS levels in the effluent.

Despite the installation of RO and MVR systems, the TDS level in the treated effluent remains much higher than the standards set by the Pollution Control Board (PCB). As a result, the PP has installed a Zero Liquid Discharge (ZLD) system as an alternative method to ensure compliance with the regulatory requirements. The ZLD system helps in eliminating the discharge of liquid waste by treating all effluent and recovering water for reuse, thus effectively reducing the TDS concentration and achieving the desired standards.

<u>The RoU program promotes wastewater treatment and reuse initiatives, thereby offering an</u> <u>alternative to the release of wastewater through surface Discharge which could have an adverse</u> <u>impact on soil Health.</u>

## A.8. Design Specifications

The (EIP will complete installation of centralized control of pumping Raw Effluent from all the Individual members and provide flow meters as recommended by INPCB and the committee. The CEP will monitor

the conductivity, Sulphate levels of each member Units to ensure Sodium Sulphate Salt is only used The Treatment Scheme Planned for I00% ZLD is described below.

The Raw Eluent Characteristics are also described below. The Raw Element will be collected in receiving sump, a flow meter for each delivery line will be provided with Totalizer for all the pumps from receiving sump to Equalization Tank. Concentration Sulphuric Acid will be dosed in Equalization Tank and pH maintained around 6.5, The dosing pumps will be controlled automatically for operation based on pH.

The Equalization Tank has diffusers and ejectors for mixing, this effluent will be pumped to Aeration Tank, The Tank has 5 blowers, considering the D.0 3 |4 no's will be operated continuously. The overflow will enter an overflow sump. The existing Tube Settler is adequate for hydraulic load, hence a new secondary clarifier to take 50% of the flow will be provided and the Aeration Tank overflow will be transferred equally to the clarifier and Tube Settler.

The settled Sludge from both Settling Tanks shall be collected in a sump and sludge recirculated to Aeration Tank. The excess Sludge will be continuously drained to new dewatering unit (Solid bowl centrifuge or Belt Press). The overflow will be sent to OR Reactor for color removal.

Excess digested biological sludge will be collected and dewatered using pumps and screw pumps into solid bowl centrifuges designed for low concentration sludge. This purely organic cake, approximately 6.0 tons of dry matter, will be used for in-house gardening or suitable external applications.

The purely inorganic mixed salt sludge, with 40-50% moisture content upon exiting the M.E., will be disposed of according to TNPCB guidelines. The CETP will investigate potential beneficial reuse by the chemical industry for economical and safe disposal. Detailed records and online data of sludge generation will be maintained. This salt will be solar dried, bagged, and then disposed to Cement Industries for Production of Cement blocks, with a daily quantity of approximately 13-15 tons.

The Chlorination is in Auto and the required chlorine added to maintain an ORP level required for colour removal. As already explained the COD of effluent after Biological is 160 mg /ltr and BOD is 10mg / ltr, most of the COD is refractive in nature and the COD after color removal is around 140 mg / ltr and BOD remain 10 mg / ltr, next stage hardness is removed using Lime Soda Process, Caustic / Soda ash will be added in the OR Reactor outlet and pumped to Flash mixer, Lime Solution is added to raise pH to 10.5 and Precipitate most hardness and Silica.

This overflow will collect in a sump, where Sulphuric Acid is added for pH correction and SMBS for free Chlorine correction, the Sump will have free Chlorine Sensors to automatically stop/ start.



TDS MASS BALANCE OF MODIFIED SCHEME WITH SODIUM



#### MODIFIED SCHEME WITH SODIUM SULPHATE SALT RECOVERY FOR 100% FLOW

The clarified effluent undergoes further treatment before the Reverse Osmosis (RO) process. SMBS dosing and pH sensors automatically control acid dosing within the system. This treated effluent is then transferred to the clarified water sump, ready for the next treatment stage.

Within the RO section, the effluent passes through Dual Media Filters (DMF), Ultrafiltration (UF), and Activated Carbon Filters (ACF) as pre-treatment before entering RO units I and II. A new RO unit (RO III) will be added to treat the reject water from RO II. The reject water from this new RO III unit will also be treated. The combined permeate from all RO units will be collected in the permeate sump.

Backwash water from the DMF, UF, and ACF units will be collected in a sump and transferred to a new tube settler/clarifier. Polymer will be dosed in the clarifier to facilitate settling of residues. The overflow from the clarifier will be routed back to the clarified water sump, while the settled sludge will be sent to a thickener.

#### **RO Reject Treatment**

The RO reject water, which has a hardness of approximately 900-1000 ppm, will be collected in a dedicated sump. This reject stream will be treated to reduce hardness, using either a pellet reactor or a lime soda process, before being fed to a Mechanical Vapor Recompression (MVR) unit.

#### MVR(Mechanical Vapor Recompression)

The concentrate from the MVR, with a TDS of approximately 100,000 ppm, will be pumped to a new Mechanical Evaporator (ME) system. This system will include a new crystallizer, boiler, and cooling tower. The ME will be designed with mother liquor return. The primary product recovered will be sodium sulfate salt.

The evaporation process occurs in two stages. The first stage involves pre-heating using process condensate, partial vapors from the first effect, and then steam. The first three effects of the evaporator will be of the enhanced falling film type, while the final effect will be a forced circulation type. Concentrated slurry from the last effect will be collected in a thickener with external chilling to facilitate crystallization. The crystals will then be processed in a pusher centrifuge to separate the crystals from the mother liquor. The mother liquor will be recycled back to the last evaporator for further concentration. The ME system will consist of one 600 KL unit and one 100 KL unit.

The entire evaporation system will operate under vacuum, with provisions for returning mother liquor and separately extracting the mixed salts concentrate for evaporation. The design is optimized to recover sodium sulfate salt while minimizing the volume of salt requiring disposal. Specifically, after the sodium sulfate salt is recovered, the remaining waste liquor will be concentrated to produce mixed salts in powder form, thereby eliminating the need for solar evaporation of the reject stream.

The recovered sodium sulfate will be dried and bagged for reuse by member industries. This system will ensure minimal salt volume for disposal and maximize the recovery of both sodium sulfate and permeate water.

#### Design Basis

Design Flow 12000 m3/day. he CETP has control of pumping and based on characteristics of effluent being in line especially sulphates and chlorides , the CTEP will pump the effuent, once quantity allowed for the member unit is reached the pump will automatically stop, this way the total quantity of effluent handled in the CETP will be controlled.

#### 1. Equalisation Tank

- 2. Numbers 1 no
- 3. Dia 31.0 m dia
- 4. Liquid depth 5.0 m
- 5. Volume 3800 m<sup>3</sup>
- 6. Incoming effluent 12000 m<sup>3</sup>/day
- 7. Detention time 7.6 hours

- Volume: 3800 m<sup>3</sup>
- Mixing: Equipped with diffusers and ejectors for effective mixing.
- Retention Time: 7.5 hours (adequate for full flow)

#### 2. Aeration Tank

The Transfer pumps are submersible pumps 2 Nos [1 W+1S] each of capacity 500m3 per hour. Head Provided is to empty the designed capacity of 500 m3 per hour at low level, The total head provided is 10.0 m with all losses, A constant head 14 chamber is provided which will regulate and ensure that only 500 m3/hr of effluent is entering Acration tank. The rcason for providing the same is that at different water levels the head of pump will vary and discharge to Aeration tank will increase creating hydraulic and organic shock loads. By providing constant head chamber the fluctuation is taken care and flow above 500 m3 / hr will flow back to Equalisation Tank. Thus a uniform flow will enter Aeration Tank irrespective of level in the Equalisation Tank (E.T).

- Volume: 8000 m<sup>3</sup>
- **Diffusers & Blowers:** 3 Working + 2 Standby (3W+2S) This indicates a redundant system for aeration, ensuring continuous operation.
- **Retention Time:** 16 hours (adequate for full flow)

#### 3. Settling Tanks (2 Nos)

- a. New Clarifier:
  - Dimensions: 16.0 m diameter x 2.5 m Side Water Depth (SWD)
  - Capacity: 4000 m<sup>3</sup>
- b. Existing Tube Settler:
  - Capacity: 8000 m<sup>3</sup>

#### 4. O.R. Reactor

• Volume: 2300 m<sup>3</sup>

• **Retention Time:** Approximately 5 hours (Note: While the volume suggests a 5-hour retention time, the text states that 20-30 minutes is typically adequate for chlorine reaction. Therefore, the reactor is considered adequately sized.)

#### 5. Clarifloculator for Lime Soda Process

- Existing Tanks: Two units, each 19m in diameter.
- Surface Loading Rate: 35 m<sup>3</sup>/m<sup>2</sup>/day required (total 400 m<sup>2</sup>).
- Existing Unit Area: 560 m<sup>2</sup> (total).
- **Outlet:** Equipped with automatic pH sensor and auto free chlorine correction for hardness removal.
- Sludge Dewatering: Existing two filter presses will be used.
- **Conclusion:** Adequate.

#### 6. RO (Reverse Osmosis)

The polishing treatment of the pre-treated effluent before it enters the Reverse Osmosis (RO) membranes involves a multi-stage filtration process. This includes dual media filters with anthracite, followed by ultrafiltration membranes, activated carbon filters, and cartridge filters. The specific configuration of the ultrafiltration and RO membrane systems adheres to the guidelines provided by their respective manufacturers. Furthermore, the overall design and arrangement of these unit operations are based on established criteria and operational data supplied by the CETP, consultants, and suppliers.

#### 7. DMF/UF/RO I & II

- **Capacity:** 230 m<sup>3</sup>/hr up to UF, 200 m<sup>3</sup>/hr for RO.
- Feed: Up to 13,500 m<sup>3</sup> to UF (including backwash), less than 12,000 m<sup>3</sup> to RO.
- **Operation:** 20 hours operation considered adequate for both UF and RO.
- **Configuration:** Existing three banks will continue for RO I & II. A new RO II will be added to treat RO reject.

#### 8. Third Stage RO (RO III)

- **Purpose:** Treats reject from RO II (all three banks).
- **Recovery:** Planned for at least 40-50% recovery to further reduce reject volume.

- Capacity: 110 m<sup>3</sup>/hr for 20 hours operation.
- **Conclusion:** Adequate.

#### 9. Reject Management

• Total RO Reject: Approximately 1100-1300 m<sup>3</sup> with specified TDS.

#### a. Hardness Removal:

i. Lime Soda Process: A new reactor clarifier (10.0m diameter x 4.0m deep, suitable for 1500 m<sup>3</sup> of reject) will be provided. Soda ash, lime, and caustic will be dosed to reduce hardness to less than 150-160 ppm.

ii. Separate filter press will be added, and the centrate will be returned to the new reactor clarifier.

- b. MVR: Can handle 1400 m<sup>3</sup>/day of reject (reduced from original 1800 m<sup>3</sup>). The current volume (1300 m<sup>3</sup>) will be processed by the MVR for concentration. Due to the higher TDS from the three RO units, the reject TDS is expected to be higher than the previously observed 80,000 ppm.
- c. Mechanical Evaporation + Crystallizer + Cooling Tower + Boiler: Required capacity of 700 KL/day (including mother liquor). A new mechanical evaporator (100 KL + 600 KL) will be used to reduce reject volume and maximize sulfate recovery. The reject waste (mixed salt) will be concentrated to 45-50% dryness to minimize volume and avoid solar evaporation.
- o **d. Salt Drying:** Recovered salt will be dried and distributed to member units.

#### OR Sump (receiving sump for Oxidation reduction effluent)

The OR (Oxidation-Reduction) sump acts as a transfer tank for effluent, with dimensions of 11.0 m diameter and 5.25 m liquid depth. A 12.5 hp ejector provides mixing within the sump. Overflow from the OR sump is directed to the hardness removal process via Lime-Soda Softening. A lifting pump transfers the effluent from the OR sump to the flash mixer at a flow rate of 500 m<sup>3</sup>/hr, overcoming a calculated head loss of 15.0 m.

Due to the implementation of a Sulphate process, it is crucial to mitigate calcium scaling in the subsequent Reverse Osmosis (RO) system. The target calcium concentration is below 120 mg/L (expressed as CaCO<sub>3</sub>) to prevent calcium salt scaling throughout all RO stages.

The existing infrastructure, consisting of a flash mixer and two clariflocculators, is deemed sufficient for the high Lime-Soda Softening process. This process effectively removes hardness, color, silica, and further reduces Chemical Oxygen Demand (COD). The expected COD after the Lime-Soda Softening process is approximately 100 mg/L.

#### Sump for back wash to UF & feed to ACF

Back wash water sump from UF / DMF / ACF a sump of 200m3 is existing. Since only sediments to be removed, This wastage is 1400m3 as per Old DPR & will be taken to proposed Clariflocculator in field for settling.

Volume of back wash - 1400m

#### **Chemical Dosing**

|               |                        | pH of<br>AT |                           |       | Flash-Mixer-Dosage |      |             | Effluent B<br>DMI |      | Reject                     | Treatm     | ent Dos        | age  |      |      |
|---------------|------------------------|-------------|---------------------------|-------|--------------------|------|-------------|-------------------|------|----------------------------|------------|----------------|------|------|------|
| Plant<br>feed | Acid -Ph<br>correction |             | OR                        | Caust | ic lye             | Soda | a ash       | Lime              | Poly | Acid-pH                    | SMBS-      | Caustic<br>Iye | SO   | Lime | Poly |
| leeu          | correction             | Outlet      | Chlorine<br>Dosa in<br>Kg | ppm   | Qty-<br>Liter      | ppm  | Qty-<br>kgs | ppm               | ppm  | -<br>correction<br>-litter | in-<br>Kgs | ppm            | ppm  | ppm  | ppm  |
| 1400          | 660                    | 7.98        | 350                       | 400   | 450                | 600  | 600         | 400               | 0.5  | 880                        | 150        | 400            | 2300 | 300  | 0.5  |
| 1300          | 650                    | 7.84        | 400                       | 400   | 600                | 600  | 900         | 400               | 0.5  | 880                        | 200        | 400            | 2300 | 300  | 0.5  |
| 1500          | 690                    | 7.98        | 30                        | 400   | 650                | 600  | 900         | 400               | 0.5  | 880                        | 200        | 400            | 2300 | 300  | 0.5  |
| 1700          | 700                    | 7.98        | 480                       | 400   | 700                | 600  | 950         | 400               | 0.5  | 880                        | 200        | 400            | 2300 | 300  | 0.5  |
| 1500          | 680                    | 7.9         | 450                       | 400   | 650                | 600  | 900         | 400               | 0.5  | 880                        | 200        | 400            | 2300 | 300  | 0.5  |
| 1200          | 635                    | 7.88        | 420                       | 400   | 600                | 600  | 650         | 400               | 0.5  | 880                        | 200        | 400            | 2300 | 300  | 0.5  |

#### KEY WATER BALANCE CHART

1. Input - 12000 KLD

Acid - 10.6 KLD

2. Recovery

a. Permeate - 11902 KLD

b. Loss (Bound in Sludge)

i. Biological Sludge - 20 KLD

ii. Chemical Sludge - 8.6 KLD

iii. Recovered Salt - 80 KLD

Total 108.6

Total Inflow - 12010.6 KLD

Recovery + loss - 11902 + 108.6 = 12010.6 KLD

#### Effluent Quality

i. pH - 8.5 - 9.0

- ii. TDS 6000-6500 mg/ltr
- iii. Sulphates 5300-5900 mg/ltr
- iv. Chlorides 400-450 mg/ltr
- v. COD 900-1050 mg/ltr
- vi. BOD 300-325 mg/ltr
- vii. Hardness 400-450 (Initially and later 150-200)

## A.9. Implementation Benefits to Water Security

Textile industry effluents contain a variety of chemicals, including hydrogen peroxide, sodium hypochlorite, sodium hydrosulfite, and sodium dithionite, along with smaller amounts of phosphates, nitrates, and salts of sodium and calcium. Additionally, the use of sodium chloride for preservation and pickling, as well as sulfate salts (primarily basic chromium sulfate) in dyeing and finishing processes, contributes significantly to the total dissolved solids (TDS) in the effluent. Further, there are various finishing operations further add to the salt load in the wastewater.

It is noted that the bulk of the hydrogen peroxide, sodium hypochlorite, sodium hydrosulfite emanates from the operations and the dying operations from semi-processed (EI/Wet blue) to finishing of washing result in effluent containing TDS, on a lower scale, mostly in the form of sulphates.

The implementation of ETPs has been crucial in safeguarding aquatic ecosystems in Noyyal River and soil health by effectively treating this harmful effluent.

Recycling wastewater from Dying and returning it to the production process after treatment is a pivotal step toward sustainability. This circular approach significantly reduces the reliance on groundwater, a precious natural resource. By minimizing the demand for fresh water, dying industries can contribute to water conservation efforts and alleviate pressure on depleting aquifers.

This project aims to inspire all Textile industries, particularly large multinational corporations, to implement sustainable water management practices. By demonstrating effective strategies for reducing captive water consumption and responsibly managing groundwater, the project hopes to foster a broader adoption of environmentally responsible approaches within the industry.

## A9.1 Objectives vs Outcomes

The impact assessment or objectives of this project activity can generally be enumerated as follows:

- The project activity highlights the catalytic role that corporate India must play vital role in reducing industrial water consumption as well as water pollution per unit of industrial output.
- The PP has showcased technology that creates safe industrial grade water from an effluent source and has overcome the challenges faced by the alternate methods implemented and/or being proposed for the same.
- The PP has showcased the successful wastewater treatment of industrial effluent, thus saving millions of liters of wastewater for the production of Lether.
- The project activity showcases best-in-class wastewater treatment technology that can replace the equivalent freshwater and industrial demand in different sectors for nonportable purposes while reducing the proportion of untreated wastewater and substantially increasing recycling and safe reuse in India.

## A9.2 Interventions by Project Owner / Proponent / Seller

The project aligns sustainable resource management by prioritizing the reuse of treated effluent over depleting groundwater sources. The PP has voluntarily invested in treating and reusing effluent, conserving millions of liters of potable water for the city.

As population growth and rising living standards increase water demand, groundwater, which supplies 85% of rural areas, faces increasing pressure. Overexploitation has led to declining water tables, water shortages, saltwater intrusion in coastal regions, and higher energy costs for pumping.

The PP's initiative has directly contributed to water security in the region. By avoiding excessive groundwater extraction, the project helps mitigate issues like falling water levels, water scarcity, saltwater intrusion, and increased energy consumption for pumping.

## A.10. Feasibility Evaluation

The installed CETP and ZLD System by the PP are robust and smoothly adapts to variations in wastewater effluent. Before establishing the project, PP has done the feasibility test as per <u>DPR</u> (Detailed Project Report).

## A.11. Ecological Aspects & Sustainable Development Goals (SDGs):

This project demonstrably achieves sustainable management and efficient utilization of India's natural resources. The project proponent (PP) had the option to install borewells, potentially depleting local groundwater reserves. Alternatively, they could have continued relying on existing, potentially potable, water resources registered with the Universal Water Registry.

Recognizing the environmental impact, the PP commendably opted for a more sustainable approach. They chose to treat and reuse the effluent generated by the Common Effluent Treatment Plant (CETP), resulting in significant water savings for the dying operations, measured in millions of liters.

This project encourages the industrial sector, particularly large-scale leather processing facilities, to adopt similar sustainable practices regarding their captive water needs and overall groundwater management.

The CETP effectively treats the textile's effluent, and the use of impervious machinery within the CETP area further safeguards against potential leakage and contamination of surrounding soil.

The sustainable development attributes attached to the project activity are demonstrated below:

| Sustainable<br>Development Goals<br>Targeted | Most relevant SDG Target/Impact                                                                                                                    | Indicator (SDG Indicator)                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 CLIMATE<br>ACTION                         | 13.2: Integrate climate change<br>measures into national policies,<br>strategies and planning                                                      | Recycling and reusing wastewater is<br>an effective solution for climate<br>change adaptation because it helps<br>mitigate the impacts of droughts,<br>floods, and other extreme weather<br>events that are becoming increasingly<br>common due to climate change due<br>to water scarcity. The quantity of<br>wastewater recycled and reused by<br>the PP is the SDG indicator. |
| <b>3</b> GOOD HEALTH<br>AND WELL-BEING       | 3.9: By 2030, substantially reduce the number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and contamination | The PP showcases how recycling and<br>reusing wastewater can prevent<br>depletion of natural water reserves<br>and prevent water scarcity during<br>droughts. The hazardous impact of<br>industrial wastewater is now avoided<br>due to this project. The PP ensures                                                                                                             |

|                                      |                                                                                                                                                                                                                                                           | water availability in water-scarce<br>zones that help promote healthy lives<br>and well-being in the region.                                                                  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 CLEAN WATER<br>AND SANITATION      | 6.3: By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally | The PP has shown recycling and safe<br>reuse of 12 million liters within the<br>industry during this monitored period,<br>which directly correlates to this<br>indicator 6.3. |
| 8 DECENT WORK AND<br>ECONOMIC GROWTH | 8.5: By 2030, achieve full and productive employment and decent work for all women and men, including for young people and persons with disabilities, and equal pay for work of equal value                                                               | Number of jobs created and also the<br>Number of people trained as part of<br>this project activity.                                                                          |
| 15 LIFE<br>ON LAND                   | 15.2.1 Progress towards sustainable forest management.                                                                                                                                                                                                    | The PP has implemented a reforestation project in the nearby area to revitalize the local ecosystem.                                                                          |

## A.12. Recharge Aspects:

NA

## A.12.1 Solving for Recharge

|              | Typical     |             |
|--------------|-------------|-------------|
| Water Budget | Estimated   | Description |
| Component    | Uncertainty | Description |
|              | (%)         |             |
|              |             |             |

| Surface Inflow     | 1% | In accordance with the RoU Standard version 7, and<br>considering that the flow meters are calibrated, PP has<br>accounted for a 1% uncertainty factor in both inflow and<br>outflow volumes to maintain a conservative approach.<br>Consequently, an uncertainty factor of 0.98 is applied to<br>all ROUs. |
|--------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precipitation      | NA | Not available                                                                                                                                                                                                                                                                                               |
| Surface Outflow    | 1% | In accordance with the RoU Standard version 7, and considering that the flow meters are calibrated, PP has accounted for a 1% uncertainty factor in both inflow and outflow volumes to maintain a conservative approach. Consequently, an uncertainty factor of 0.98 is applied to all ROUs.                |
| Evapotranspiration | NA | Not available                                                                                                                                                                                                                                                                                               |
| Deep Percolation   | NA | Not available                                                                                                                                                                                                                                                                                               |

## A.13. Quantification Tools

#### **Baseline scenario:**

The baseline scenario is the situation where, in the absence of the project activity, the PP would have <u>one or all</u> of the below options:

- (a) installed multiple bore wells within the project boundary which would have depleted the local groundwater resources (aquifers); **and/or**
- (b) diverted existing safe drinking water resources from the surrounding residential area; and/or
- (c) discharged the ETP effluent without further recycling and reusing.

Hence the following baseline scenario is applicable for this project activity:

"The net quantity of treated ETP effluent / wastewater that would be discharged directly into the local drain/sewer without further being recycled and/or reused daily post treatment per year"

The net quantity of treated water used is measured via flow meters installed at the site. The primary set of data records are kept at plant level, managed by Tirupur CETP team which is Mentioned in Appendix. Also, for conservative purposes, the working days or operational days have been assumed at 330 days in a year during the 1st monitoring period **(01/01/2015 to 31/12/2024)**. However, the number of days is not an influential parameter on RoUs calculation as RoUs are calculated based on total quantity of treated water being recycled & reused.

| MONTH  | RAW<br>EFFULUENT<br>RECIVED | RO PERMEATE | BRINE | RoUs with<br>Uncertainity<br>Factor<br>([Ro<br>per+Brine)*0.98 | Year Wise |
|--------|-----------------------------|-------------|-------|----------------------------------------------------------------|-----------|
| Jan-15 | 37395                       | 42914       | 0     | 42055.72                                                       |           |
| Feb-15 | 46123                       | 52033       | 0     | 50992.34                                                       |           |
| Mar-15 | 55202                       | 63908       | 0     | 62629.84                                                       | 610519    |
| Apr-15 | 60830                       | 50755       | 0     | 49739.9                                                        |           |
| May-15 | 55893                       | 48223       | 0     | 47258.54                                                       |           |
| Jun-15 | 66884                       | 57510       | 0     | 56359.8                                                        |           |
| Jul-15 | 62300                       | 54364       | 0     | 53276.72                                                       |           |
| Aug-15 | 57085                       | 52016       | 0     | 50975.68                                                       |           |
| Sep-15 | 64558                       | 43433       | 0     | 42564.34                                                       |           |
| Oct-15 | 70420                       | 60130       | 0     | 58927.4                                                        |           |
| Nov-15 | 36228                       | 33089       | 0     | 32427.22                                                       |           |
| Dec-15 | 70667                       | 64604       | 0     | 63311.92                                                       |           |
| Jan-16 | 37395                       | 42914       | 0     | 42055.72                                                       |           |
| Feb-16 | 46123                       | 52033       | 0     | 50992.34                                                       |           |
| Mar-16 | 55202                       | 63908       | 1273  | 63877.38                                                       |           |
| Apr-16 | 60830                       | 50755       | 1827  | 51530.36                                                       |           |
| May-16 | 55893                       | 48223       | 1972  | 49191.1                                                        |           |
| Jun-16 | 66884                       | 57510       | 2265  | 58579.5                                                        | 630501    |
| Jul-16 | 62300                       | 54364       | 2365  | 55594.42                                                       | 030501    |
| Aug-16 | 57085                       | 52016       | 2256  | 53186.56                                                       |           |
| Sep-16 | 64558                       | 43433       | 2386  | 44902.62                                                       |           |
| Oct-16 | 70420                       | 60130       | 1996  | 60883.48                                                       |           |
| Nov-16 | 36228                       | 33089       | 1499  | 33896.24                                                       |           |
| Dec-16 | 70667                       | 64604       | 2550  | 65810.92                                                       |           |
| Jan-17 | 49902                       | 33506       | 1528  | 34333.32                                                       |           |
| Feb-17 | 76856                       | 73181       | 2698  | 74361.42                                                       |           |
| Mar-17 | 87756                       | 77347       | 3110  | 78847.86                                                       | 944695    |
| Apr-17 | 80005                       | 72740       | 2479  | 73714.62                                                       |           |
| May-17 | 90173                       | 77739       | 3110  | 79232.02                                                       |           |

| 4                | 96572.14  | 3236 | 95307  | 100002 | Jun-17 |
|------------------|-----------|------|--------|--------|--------|
|                  | 80444.28  | 2997 | 79089  | 87878  | Jul-17 |
| 8                | 74333.98  | 2981 | 72870  | 85185  | Aug-17 |
|                  | 97960.8   | 3111 | 96849  | 100342 | Sep-17 |
| 2                | 68878.32  | 2368 | 67916  | 71044  | Oct-17 |
| 6                | 86026.36  | 5511 | 82271  | 95300  | Nov-17 |
| 4                | 99989.4   | 852  | 101178 | 105439 | Dec-17 |
| 2                | 64105.72  | 1872 | 63542  | 74878  | Jan-18 |
| 8                | 86975.98  | 2741 | 86010  | 100010 | Feb-18 |
| 2                | 99625.82  | 3262 | 98397  | 111364 | Mar-18 |
| 8                | 89827.78  | 2778 | 88883  | 102174 | Apr-18 |
| 4                | 87595.34  | 2984 | 86399  | 103929 | May-18 |
| 6                | 93631.16  | 3196 | 92346  | 103940 | Jun-18 |
| 1075706          | 84816.06  | 2770 | 83777  | 98979  | Jul-18 |
| 2                | 103282.2  | 3448 | 101942 | 111299 | Aug-18 |
| 4                | 92412.04  | 3001 | 91297  | 100311 | Sep-18 |
| 6                | 110198.06 | 3514 | 108933 | 120011 | Oct-18 |
| 4                | 55399.4   | 1655 | 54875  | 57992  | Nov-18 |
| 6                | 107836.26 | 3549 | 106488 | 112031 | Dec-18 |
| 6                | 84985.6   | 2485 | 84235  | 85537  | Jan-19 |
| 6                | 92175.86  | 3384 | 90673  | 103390 | Feb-19 |
| .8               | 107629.48 | 3557 | 106269 | 111015 | Mar-19 |
| 4                | 97606.04  | 3357 | 96241  | 100916 | Apr-19 |
| 4                | 106773.94 | 4610 | 104343 | 115515 | May-19 |
| 2 1127172        | 96862.22  | 4144 | 94695  | 99884  | Jun-19 |
| 8 <b>1127172</b> | 67170.18  | 3490 | 65051  | 87150  | Jul-19 |
| 4                | 92534.54  | 3565 | 90858  | 101934 | Aug-19 |
| 4                | 96155.64  | 3466 | 94652  | 104304 | Sep-19 |
| 4                | 84160.44  | 3098 | 82780  | 88484  | Oct-19 |
| 6                | 97565.86  | 3363 | 96194  | 101365 | Nov-19 |
| 7                | 103551.7  | 3783 | 101882 | 115816 | Dec-19 |
| 2                | 87072.02  | 3899 | 84950  | 92557  | Jan-20 |
| 2                | 105314.72 | 3944 | 103520 | 112063 | Feb-20 |
| 8                | 82957.98  | 2653 | 81998  | 85016  | Mar-20 |
| 2                | 1081.92   | 1104 | 0      |        | Apr-20 |
| 1121953          | 70276.78  | 904  | 70807  | 32542  | May-20 |
| 8                | 93850.68  | 3619 | 92147  | 104411 | Jun-20 |
| 4                | 112712.74 | 4313 | 110700 | 120016 | Jul-20 |
| 4                | 107290.4  | 4051 | 105429 | 111524 | Aug-20 |
| 2                | 120739.92 | 4434 | 118770 | 121889 | Sep-20 |
| 4                | 131675.74 | 4751 | 129612 | 135675 | Oct-20 |

|         | 86946.58  | 2690 | 86031  | 91442  | Nov-20 |
|---------|-----------|------|--------|--------|--------|
|         | 122033.52 | 4439 | 120085 | 136675 | Dec-20 |
|         | 75166.98  | 2349 | 74352  | 89113  | Jan-21 |
|         | 104752.2  | 4099 | 102791 | 119302 | Feb-21 |
|         | 121355.36 | 4965 | 118867 | 142686 | Mar-21 |
|         | 84668.08  | 3470 | 82926  | 115383 | Apr-21 |
|         | 36990.1   | 1399 | 36346  | 44879  | May-21 |
|         | 42460.46  | 1476 | 41851  | 57292  | Jun-21 |
| 1186727 | 119542.36 | 4730 | 117252 | 133501 | Jul-21 |
|         | 119389.48 | 3907 | 117919 | 134545 | Aug-21 |
|         | 135511.46 | 5000 | 133277 | 147567 | Sep-21 |
|         | 142461.62 | 5398 | 139971 | 152087 | Oct-21 |
|         | 75030.76  | 2159 | 74403  | 77304  | Nov-21 |
|         | 129398.22 | 4914 | 127125 | 141240 | Dec-21 |
|         | 87848.18  | 3118 | 86523  | 95815  | Jan-22 |
|         | 110966.38 | 3928 | 109303 | 119164 | Feb-22 |
|         | 124223.82 | 4327 | 122432 | 138372 | Mar-22 |
|         | 116098.64 | 4406 | 114062 | 127511 | Apr-22 |
|         | 106612.24 | 3772 | 105016 | 113844 | May-22 |
| 1201025 | 116188.8  | 3701 | 114859 | 119590 | Jun-22 |
| 1301025 | 108005.8  | 3329 | 106881 | 108671 | Jul-22 |
|         | 97183.66  | 2841 | 96326  | 96355  | Aug-22 |
|         | 119793.24 | 3378 | 118860 | 121145 | Sep-22 |
|         | 89160.4   | 2368 | 88612  | 85362  | Oct-22 |
|         | 107684.36 | 3701 | 106181 | 104539 | Nov-22 |
|         | 117259.94 | 3705 | 115948 | 114914 | Dec-22 |
|         | 75926.48  | 2130 | 75346  | 73247  | Jan-23 |
|         | 95684.26  | 1813 | 95824  | 100772 | Feb-23 |
|         | 112267.82 | 2234 | 112325 | 125212 | Mar-23 |
|         | 115618.44 | 5179 | 112799 | 109064 | Apr-23 |
|         | 121398.48 | 2689 | 121187 | 122551 | May-23 |
| 1400293 | 124128.76 | 3984 | 122678 | 127069 | Jun-23 |
| 1400295 | 133774.9  | 4009 | 132496 | 126304 | Jul-23 |
|         | 134922.48 | 3962 | 133714 | 126575 | Aug-23 |
|         | 129618.72 | 3821 | 128443 | 130075 | Sep-23 |
|         | 131109.3  | 3784 | 130001 | 134831 | Oct-23 |
|         | 92131.76  | 3865 | 90147  | 85011  | Nov-23 |
|         | 133711.2  | 2404 | 134036 | 135139 | Dec-23 |
|         | 103056.8  | 2976 | 102184 | 103136 | Jan-24 |
| 1568948 | 129610.88 | 4639 | 127617 | 132542 | Feb-24 |
|         | 138483.8  | 4041 | 137269 | 140298 | Mar-24 |

| Total  |        |        |      | 10967538  | 10967538 |
|--------|--------|--------|------|-----------|----------|
| Dec-24 | 142470 | 148837 | 4640 | 150407.46 |          |
| Nov-24 | 103537 | 105968 | 2408 | 106208.48 |          |
| Oct-24 | 131973 | 136452 | 3812 | 137458.72 |          |
| Sep-24 | 138461 | 131472 | 4494 | 133246.68 |          |
| Aug-24 | 141811 | 141224 | 4905 | 143206.42 |          |
| Jul-24 | 131063 | 128156 | 6512 | 131974.64 |          |
| Jun-24 | 126119 | 126691 | 2761 | 126862.96 |          |
| May-24 | 143674 | 142708 | 5070 | 144822.44 |          |
| Apr-24 | 130674 | 122388 | 3743 | 123608.38 |          |

#### Quantification

| Year       | Total ROUs<br>(1000 liters)/yr<br>UCR Cap (1 million RoUs/yr |  |
|------------|--------------------------------------------------------------|--|
| 2015       | 610519                                                       |  |
| 2016       | 630501                                                       |  |
| 2017       | 944695                                                       |  |
| 2018       | 1000000                                                      |  |
| 2019       | 1000000                                                      |  |
| 2020       | 1000000                                                      |  |
| 2021       | 1000000                                                      |  |
| 2022       | 1000000                                                      |  |
| 2023       | 1000000                                                      |  |
| 2024       | 1000000                                                      |  |
| Total RoUs | 9185715                                                      |  |

In accordance with the UWR standard, RoUs are capped at 1 million per year. Therefore, adhering to the guidelines, the RoUs from 2015 to 2024 have been adjusted to comply with the annual cap of 1 million.

## A.14. UWR Rainwater Offset Do No Net Harm Principles

According to the UCR RoU Standard principles, the project activity accomplishes the following:

#### Increases the sustainable water yield in areas where over development has depleted the aquifer

According to the data released by the Central Groundwater Board in 2021, the total amount of groundwater that can be utilised in India in a year is 398 billion cubic meters (BCM), of which, approximately 245 BCM is currently being utilised, which is about 62 per cent of the total. But the level of exploitation of groundwater is very high in States like Punjab, Rajasthan, Haryana, Delhi and Tamil Nadu. This project was commissioned in 2008, and the PP has reduced the proportion of untreated wastewater that future generations would need to recycle and has showcased recycling and safe reuse within the industry from unutilized water resources. Revenue from the sale of UCR RoUs will enable scaling up such project activities.

#### • Collect unutilized water or rainwater and preserve it for future use

In India, at the district level, in 24 states/UTs, as many as 267 districts had stages of groundwater extraction more than 63 per cent, ranging from 64 per cent to 385 per cent (source: https://www.business-standard.com/article/current-affairs/from-58-to-63-india-pumped more-groundwater-between-2004-and-2017-121122101377\_1.html). This project activity serves as an example to recycle and reuse wastewater and encourages companies, especially large and transnational companies in the biotechnology and biopharmaceuticals sector, to adopt similar sustainable practices in regard to captive water requirements and groundwater management.

Conserve and store excess water for future use

The project activity decreases the dependence on groundwater, thereby preventing excessive depletion. Between 2015 to 2024, the project activity has reused 10.7 million litres of ETP effluent successfully post treatment with gainful end use of the same.

## A.15. Scaling Projects-Lessons Learned-Restarting Projects

Scaling up effluent treatment in India's textile industry, exemplified by the Veerapandi CETP in Tirupur, offers a promising solution for improved water and wastewater management. This CETP, with its 10.7 m<sup>3</sup>/day capacity and Zero Liquid Discharge (ZLD) design, demonstrates the effectiveness of centralized treatment. This successful model can be replicated in other textile hubs like Ahmedabad, Jaipur, and Surat, adapting the CETP design to their specific wastewater volumes and environmental contexts.

A cluster-based approach, where numerous small and medium-sized dyeing units share a treatment facility, offers several advantages. It reduces operational costs for individual units, ensures consistent effluent treatment quality, and minimizes the environmental risks associated with untreated wastewater discharge.

Scaling up these CETPs involves not only increasing treatment capacity but also integrating advanced technologies. Upgrading existing systems with Membrane Bioreactors (MBRs), Ultrafiltration (UF), or Nanofiltration (NF) can significantly improve the quality of treated water, making it suitable for reuse. Optimizing Reverse Osmosis (RO) systems and implementing effective brine management strategies are also crucial. Treating brine concentrates, typically high in salts, to recover valuable by-products like sodium chloride and sodium sulfate offers both economic and environmental benefits. These recovered salts can be sold or utilized in other sectors like agriculture or construction, contributing to a circular economy. However, the storage and management of these recovered salts require careful consideration.

By maximizing resource recovery and minimizing waste, scaled-up CETPs can drive the textile industry towards a zero-waste model, reducing its environmental impact while simultaneously creating economic value. This holistic approach to effluent treatment is essential for the sustainable growth of the dyeing industry in Tirupur and across India.

#### Appendix> Unit Member

| S.No | Name of the Members          | 100 % DPR<br>Capacity |
|------|------------------------------|-----------------------|
| 1    | Anjali Process               | 100                   |
| 2    | Andavar Textile Process      | 110                   |
| 3    | Atul Process                 | 300                   |
| 4    | Brilliant Dyers              | 250                   |
| 5    | Colour Point                 | 130                   |
| 6    | Colour Point Textile Process | 245                   |
| 7    | Golden key textile Process   | 120                   |
| 8    | Frontline Exports P Ltd      | 96                    |
| 9    | Ganapathi Process            | 300                   |
| 10   | Jango Dyeing                 | 110                   |
| 11   | KMS Textile Dyers            | 150                   |
| 12   | KRP Dyeing                   | 250                   |
| 13   | KRP Colours                  | 220                   |
| 14   | Liberty Bleaching and Dyeing | 190                   |
| 15   | Mahaveer Colour Process      | 130                   |
| 16   | Navasakthi Textile Process   | 100                   |
| 17   | Shree Sai colours            | 160                   |

| 18 | Oskar Process                 | 360  |
|----|-------------------------------|------|
| 19 | P Prime Process               | 20   |
| 20 | Popular Process               | 204  |
| 21 | Puma Dyeing Mills             | 300  |
| 22 | R.M.S Dyeing                  | 300  |
| 23 | Santhi Dyeing                 | 96   |
| 24 | Senthilkumaran Process        | 160  |
| 25 | Sharp Processing              | 220  |
| 26 | Skywin Colours and Bleachers  | 300  |
| 27 | Sivasakthi Dyeing Factory     | 150  |
| 28 | Sree Vadivel Dyeing           | 160  |
| 29 | Sri Balaji Textile Processors | 300  |
| 30 | Sri Amman Processors          | 230  |
| 31 | Sri Karpagam Dyeings          | 230  |
| 32 | Sri Santhosh Knit Process.    | 160  |
| 33 | Sri Suriya Textile Process    | 80   |
| 34 | Sruthi Tie N- Dye             | 195  |
| 35 | Subam Dyeing                  | 50   |
| 36 | SVS Processing Mills          | 150  |
| 37 | Time Process Mills            | 100  |
| 38 | Times Dyeing                  | 450  |
| 39 | Two Win Textile Process       | 240  |
| 40 | Will Power Process            | 250  |
| 41 | Win Process                   | 15   |
| 42 | Shree Thangamyil Colours      | 150  |
| 43 | Yellow Dyers                  | 125  |
| 44 | Aiswarya Textile Process      | 180  |
| 45 | Vee.Gee.Process               | 50   |
| 46 | Vizayalakshmi Textile Mills   | 60   |
| 47 | Kadaieswara Process           | 200  |
| 48 | Sivan Bleaching               | 110  |
| 49 | Sri Udhayam Bleachings        | 41   |
| 50 | Adhithiya Textile Process     | 360  |
| 51 | Anurag Dyeng                  | 93   |
| 52 | Brinda Processing Mills       | 1100 |

| 53 | M J Process (Supreme Colours) | 310 |
|----|-------------------------------|-----|
| 54 | Maheshkumar Dyeing            | 228 |
| 55 | PMC Processing Mills          | 110 |
| 56 | Shri Hari Processing Mills    | 20  |
| 57 | Sri Balaji Processing Mills   | 300 |
| 58 | Universal Dyeing              | 170 |
| 59 | Jango Bleaching Factory       | 30  |
| 60 | Makeshkumar Mills             | 1   |
| 61 | SSK Bleaching                 | 1   |
| 62 | Stallion Bleaching            | 5   |
| 63 | Tip Top Processing            | 100 |
| 64 | Winner Process                | 5   |
| 65 | Pantone Dyers                 | 150 |
| 66 | Confident Process             | 150 |
| 67 | Siva Textile Process          | 150 |
| 68 | Suruthi Colours               | 74  |

## Appendix> Flow Meter



## Appendix> Quality Test for Effluent and Treated Water

#### A. Pre-Treatment

| PARAMETERS   | RECEIVING | EQUALIZATION | AERATION | S CLARIFIER |
|--------------|-----------|--------------|----------|-------------|
| pН           | 10.24     | 7.45         | 8.03     | 8.10        |
| TDS          | 10900     | 10600        | 10800    | 10560       |
| Mg Hardness  | 90        | 100          | 90       | 90          |
| Ca Hardness  | 80        | 60           | 60       | 50          |
| M Alkalinity | 1680      | 1320         | 1440     | 1420        |
| P Alkalinity | 120       | 80           | 120      | 90          |
| Chloride     | 980       | 1070         | 1180     | 1230        |
| Sulphate     | 5200      | 5000         | 5100     | 5060        |
| Silica       | 40        | 40           | 20       | 20          |
| Colour       | 4700      | 3200         | 1270     | 1290        |
| COD          | 1680      | 1240         | 256      | 264         |
| BOD          | 520       | 460          | 400      | 400         |
| TSS          | 196       | 184          | 5180     | 56          |
| Turbidity    | 64        | 70           | 7.20     | 8.10        |

#### **B. Treated Water**

| PARAMETERS   | MEE Feed | MEE Feed<br>II(kws) | Chiller Feed | Chiller ML |
|--------------|----------|---------------------|--------------|------------|
| рН           | 6.30     | 9.51                | 9.44         | 9.35       |
| TDS          | 103800   | 374000              | 389000       | 374000     |
| Mg Hardness  | 160      | 260                 | 200          | 240        |
| Ca Hardness  | 90       | 180                 | 160          | 160        |
| M Alkalinity | 1100     | 9550                | 7600         | 9400       |
| P Alkalinity | 240      | 1600                | 1200         | 1480       |
| Chloride     | 18700    | 114000              | 86000        | 112000     |
| Sulphate     | 49800    | 172300              | 182400       | 174600     |
| Colour       | 2600     | 4600                | 4900         | 5600       |
| COD          | -        | -                   | -            | -          |
| Silica       | -        | -                   | -            | -          |